Refineries & Petrochemical Plants • Pumping & Compressor Stations • Power Generation Plants, Power Transmission & Substations • Industrial Manufacturing Plants • Pipelines & Tank Farms • Gas Injection Projects
Building a Better World for Future Generations

Oil, Gas & Industry

Refineries & Petrochemical Plants • Pumping & Compressor Stations • Power Generation Plants, Power Transmission & Substations • Industrial Manufacturing Plants • Pipelines & Tank Farms • Gas Injection Projects
Mission
To Provide World-Class Management, Engineering, Procurement & Construction Services Through People & Organizational Development to Improve the Quality of Life

Values
■ Respecting People, Their Values & Rights
■ Observing Professional Ethics and Adhering to all Obligations
■ Commitment to Health, Safety and Environment
■ Commitment to Providing Desired Quality
■ Cherishing Creativity, Initiative and Innovation Culture
■ Promoting Continual Technical & Managerial Improvements
■ Commitment to Win-Win-Win Relationship

Services
■ Project Development
■ Project Management
■ Engineering
■ Procurement
■ Construction
■ Financing
■ Investment
■ Operation and Maintenance

Divisions

Civil
- Ports & Harbors
- Airports
- Roads, Elevated Highways & Tunnels
- Bridges

Water and Wastewater
- Water Transfer and Diversion Tunnels
- Irrigation & Drainage Networks
- Water and Wastewater Treatment Plants
- Water Transmission Lines
- Wastewater Collection and Transmission Lines (by Pipelining Method)

Railway Transportation Systems
- Railways
- Urban Railways
- Monorails

Housing and Buildings
- Mass Housing
- Residential Complexes
- Townships
- Infrastructure Facilities & Landscaping
- Commercial & Office Complexes
- Sports, Recreational, Cultural & Medical Facilities

Oil, Gas and Industry
- Refineries & Petrochemical Plants
- Pumping & Compressor Stations
- Power Generation Plants, Power Transmission & Substations
- Industrial Manufacturing Plants
- Pipelines & Tank Farms
- Gas Injection Projects

Health, Safety and Environmental Policy
As a general contractor, Kayson is committed to safeguarding the health and safety of its staff and other stakeholders (such as subcontractors, partners, neighbors, visitors, etc.) and protecting the environment.

To achieve these goals, all levels of the organization and subcontractors shall adhere to the following commitments:
■ Creating a safe and healthy workplace
■ Minimizing the impact on the environment
■ Minimizing disruption in the daily life of people and society
■ Complying with legal requirements (local, national and international), and clients’ HSE requirements
■ Formulating, updating, and implementing suitable and creditable models for the Company’s HSE management system
■ Providing training for managers and supervisors and securing their active participation in the implementation of basic HSE principles
■ Training and encouraging personnel at all levels of the organization and obliging them to abide by basic HSE principles
■ Providing training for subcontractors and obliging them to comply with basic HSE principles
■ Recording, investigating, researching near misses, accidents and hazards and their causes in order to eliminate them, and, if not possible, minimize the possibility of their recurrence
■ Continually improving the performance of the company’s HSE management system

Quality Policy
In Concern with our Mission and to Achieve our Vision and Objectives, with Observing Values and Adhering to all Specifications and Requirements Agreed upon in Contracts, National and International Regulations and Standards, with all Staff Involvement, Kayson is committed to:
■ Continual Monitoring and Improvement in Quality of Design and Construction of Projects
■ Continual Improvement of Efficiency and Effectiveness of Processes based on Results of Audits, Evaluations and Performance Measurements and Organizational Improvement Management Feedbacks
■ Ensuring Efficient Provision and Allocation of Resources to Execute Processes Effectively
■ Empowering, Developing and Enhancing Knowledge of Employees and Increasing their Involvement in the Effective Development and Implementation of Management Systems and Knowledge and Experience Transference
■ Understanding and Meeting Stakeholders’ Requirements and Expectations based on Sustainable Development and Mutual Benefit
South Pars Gas Field Development
Phase 12 (EPC2)

Project Outline
The South Pars is a natural gas and condensate field located in the Persian Gulf. It is the largest gas field shared between Iran and Qatar. The field encompasses an area of nearly 9,700 square kilometers, of which 3,700 square kilometers belongs to Iran. According to the latest estimates, the Iranian part of the field holds 14 trillion cubic meters of in-place gas, equivalent to 50 percent of Iran’s and 8 percent of the world’s total associated gas reserves. The Iranian side also holds 18 billion barrels of condensates.

Phase 12 is situated in the southeastern block of the South Pars gas field on the border with Qatar and covers an area equal to 130 square kilometers. The onshore facilities of EPC2 portion is being built by the DSKI joint venture in Tombak area some 55 km west of Assaluyeh.

The purpose of developing Phase 12 is to produce 78 MMSCMD natural gas to inject into IGAT-6 pipeline and alternatively to deliver two third of the capacity, as sour wet gas, to liquefying natural gas units of IRAN LNG Project. Another executive objective of this great national project is to produce 120,000 barrels of heavy gas condensate as well as 750 tonnes of granulated sulfur per day.

The onshore gas treatment facilities of South Pars gas field development project (Phase 12) have been broken down into three separate EPC projects, the most important of which, EPC2, is carried out by DSKI joint venture, including Daelim of South Korea; Sazeh Consultants, Engineering & Construction; Kayson and Iran Industrial Networks Development Company (IIND).

The onshore facilities of Phase 12 are comprised of the following units:

- Receiver and separator of gas and condensates
- Gas condensate stabilization unit
- Six identical trains for gas processing each consisting of Sweetening unit, Dehydration unit, Dry gas Dew-pointing unit, De-mercaptanization unit. (The daily output of each train is 500 MMSCFD)
- Export gas compression unit
- Sulfur recovery and granulation unit
- Mono Ethylene Glycol (MEG) regeneration unit
- Utility services such as emergency power, steam, desalination, water treatment, Nitrogen plant, instrument & utility air
- Other services such as flare system, Fire gas system, Water fire fighting system, Wastewater treatment unit
- Technical buildings, Central control building, Laboratory, Workshop, Offices
- Control rooms, Power substations, Laboratory, Workshop, Offices
- Four storage & exportation reservoirs for gas condensates
- Four storage & exportation reservoirs for gas condensates
- Flares, Blow down, Burn Pit system, Technical buildings, Central control building, Laboratory, Telecommunication building and Access roads
- Emergency power system, Steam generator, Fuel gas system
- Instrument and utility air, Nitrogen generation plant
- Sea water intake & outfall, Waste effluent disposal
- Sea water desalination, Water polishing through ion exchangers, Wastewater treatment unit, Potable water purification unit, Cooling water

Key statistics

- Cut and fill: 1,334,000 m³
- Piping: 975,500 inch-dia.
- Equipment weight: 17,447 t
- Steel structure: 23,000 t
- Concrete: 152,000 m³
- Industrial buildings: 18,200 m²
- Camp area: 61,200 m²
- Electrical cabling: 1,508,000 m
- Instrument cabling: 993,000 m

Scope of Work

The project's scope of work includes engineering, procurement, and installation of:

- Marine pipeline, pig receiver, Slug catcher, HP separators
- Technical buildings, Central control building, Laboratory, Workshop, Offices
- Control rooms, Power substations, Laboratory, Workshop, Offices
- Emergency power system, Steam generator, Fuel gas system
- Instrument and utility air, Nitrogen generation plant
- Sea water intake & outfall, Waste effluent disposal
- Sea water desalination, Water polishing through ion exchangers, Wastewater treatment unit, Potable water purification unit, Cooling water

Status: Completed
4th Aromatics Plant, Process Area

Project Outline

The 4th Aromatics Plant is the world’s largest petrochemical aromatics producing complex. The Oil Ministry and the National Petrochemical Company (NPC) of Iran awarded this project to a joint venture between Jahan Pars, Kayson and Tehran Jonoob companies.

The project employed over 2,500 workers and nearly 250 site staff, mostly engineers and technicians, making it one of the largest petrochemical projects carried out by a private sector company in Iran.

With a total annual capacity of 1.28 million tonnes, the plant produces 750,000 tonnes of paraxylene, 430,000 tonnes of benzene and 100,000 tonnes of ortho-xylene per year as its main products. Pentane cut, liquefied gas, light hydrocarbons, heavy aromatics and raffinate are considered as byproducts of this plant and 3.19 million tonnes of them are yearly produced. The annual feedstocks of the plant are supplied by the liquefied gases of first, second and third phases of South Pars Gas Field which are 4.5 million tonnes as well as 270,000 tonnes of benzene pyrolysis which are provided by Jam Petrochemical Company, the implementer of the 10th Olefin project.

Scope of Work

This project involved civil and structural works, installation of mechanical and electrical equipment, instrumentation, above and underground cabling and piping. An important feature of the project was the contractor’s commitment to operate a quality management system based on ISO 9001 standards, using advanced techniques of project control and putting in place effective occupational health, safety & environmental management systems.

Key Statistics

- **Earthwork:** 394,000 m³
- **Total Concrete:** 77,000 m³
- **Industrial Building:** 12,000 m²
- **Steel Structure:** 6,750 t
- **Total Piping:** 1,110,000 (inch-dia)
- **Super heavy Equipment:** 6,800 t
- **Fixed, Rotary, Fire Heaters:** 23,000 t
- **Insulation Work:** 160,000 m²
- **Electrical Cabling:** 636 km
- **Instrument Cabling:** 513 km*
- **Painting:** 346,000 m²

* 11,000 I/O
Aghajari Gas Injection Project

Project Outline
Natural gas from South Pars Gas Field largely is slated to be shipped north for home and industrial consumption via a planned 56-inch, 512 kilometer, IGAT-3 pipeline. The gas, mainly from phases 6, 7 & 8 of South Pars Gas Field (Assaluyeh), will also be reinjected to boost output at the huge Aghajari field. The pressure of the gas entering Aghajari Gas Injection station is increased 240 bars by seven turbo-compressor units in two stages, transported out of the station by means of two 24-inch North-South pipelines and injected into 22 oil wells.

Main equipment of Aghajari Gas Injection station

Turbo compressor:
Each set of turbo compressors includes a 32,587 KW turbine (in ISO Rating condition), one gearbox for accelerating rotation speed, helical gear with 1:2/5 transmission coefficient and a 2-stage, 6-blade, back-to-back compressor.

The gas which flows into the station, reaches the pressure of 130 and 240 bars at the first and second stages, respectively. A decrease in temperature is the result of the flow of gas into the air coolers after each stage.

Air Cooler:
As mentioned before, each set of turbo compressors is equipped with two air coolers known as stage 1 and stage 2 air coolers. The first and second stage air coolers, which operate with 37 KW, 400 volt motors respectively, cool the compressed fluid by increasing its pressure initially 140 bars and then 258 bars to achieve the desired temperature. Each cooler has four impellers and four motors.

Pressure Vessel:
There are 22 pressure vessels at the gas injection station, including:
- KO drum of the first stage: 7 units
- KO drum of the second stage: 7 units
- Fuel HP KO Drum: 1 unit
- Fuel LP KO Drum: 1 unit
- Flare KO Drum: 1 unit
- Air Receiver: 1 unit
- Feed-line Scrubber: 1 unit
- Instrument Air: 1 unit
- Nitrogen Storage Vessel: 2 units

Storage Tank:
There are five storage tanks at the gas injection station, including:
- A 4,750 m³ fire-fighting water tank
- A 100 m³ diesel fuel tank
- A 72 m³ fresh turbine oil tank
- A 72 m³ meter used turbine oil tank
- A 71 m³ drinking water tank

Get More Info...
The Saveh grey cement factory is located 50 km from Saveh, a city in Markazi province in central Iran. Encompassing an area of 120 hectares, the plant is set to produce 7200 tonnes of cement per day, which can be increased to 8000 tonnes. Saveh grey cement factory is one of the most advanced cement producing plants in Iran, as well as the Middle East. Given the fact that over the past 20 years construction time for cement factories built in Iran has averaged 8 years or more, the Saveh factory is completed in 36 months (including civil & installation works), is destined to usher in a new era in Iran's cement industry as far the speed of construction is concerned. The plant will also exceed national quality standards.

Limestone, the main raw material used in Saveh grey cement factory, is acquired from the huge Doshakh quarry located only 4 km away from the project site. Also, 400 hectares of uncultivated land surrounding the factory is devoted to planting trees, shrubs, and other greenery, thus providing a pleasant scenery and minimizing the factory's negative impacts on the environment.

Scope of Work
Kayson's scope of work involved the civil works of Saveh grey cement factory's production lines, including cut and fill operations, concrete pour of above and underground structures, limestone crushing plant, raw mill feed bunkers, raw mills, two nine-stage 115-meter high preheaters, coolers, ESP (electrostatic precipitator) dedusting units, cement silos, clinker silos, packing and loading plant, blending silos, masonry work, building construction, structural steelwork, etc.

Key Statistics
- Concrete: 145,000 m³
- Reinforcement: 18,000 t
- Formwork: 250,000 m²
- Heavy steelwork: 4000 t
- Earthwork: 220,000 m³
This swap project which was implemented by our client, the National Iranian Oil Engineering and Construction Company, is designed to facilitate the transfer of crude oil from littoral states of Caspian sea to petroleum refining facilities in Tehran. The project called for the installation of 16-inch and 32-inch crude-oil pipelines, with a daily capacity of 115,000 barrels of crude oil in its first phase. The project’s capacity will increase to 370,000 and 500,000 barrels per day respectively when the second and third phases of the project come online.

The 340 km crude oil pipeline links the Caspian Sea to Iran’s 250,000 bpd Tehran refinery and the 100,000 bpd Tabriz refinery. Five international companies, including Russia’s Lukoil, Dublin-based Dragon Oil, Kazakhstan’s Munai-Impex, BP-controlled Sidanco and European trader Vitol, are already involved in shipping crude to Neka. The oil delivered is exchanged for an equal amount of Iranian crude loaded for export at Iran’s Kharg island terminal in the Persian Gulf.

Scope of Work

The Project’s basic engineering was performed by the Design & engineering division of National Iranian Oil Company (NIOC) and the installation of 4 pumping stations, a pressure breaker, and a terminal was awarded to Kayson within the framework of an EPC (Engineering, Procurement, Construction) contract. It was the first time in the history of the Iranian construction industry that the NIOC entrusted an EPC project to a private sector company.

Kayson’s scope of work involved local and foreign procurement, process, mechanical, electrical, and civil engineering, piping and architectural works, as well as start-up and delivery. Kayson was also responsible for putting in place safety, quality assurance and quality control procedures in accordance with contract requirements.
Project Outline
The South Pars Field is being developed in multi-phases, each of which is based on an output level of at least one billion cubic feet per day of natural gas and 40,000 barrels per day of associated condensate. The scope of the work performed by the joint venture covered phases two and three and included the actual site of the gas treatment facility, the construction area where the prefabrication workshop for the gas treatment plant will be located, and the camp area comprising office space, sleeping quarters, a clinic, as well as storage and other facilities.

Main Features
The Total South Pars Gas Field Development Project (Phases 2 & 3) which encompassed an area of over 2.8 million square meters called for nearly 7 million cubic meters of earthwork, 24 km of earth and concrete-lined culverts and channels, 12 km of fancing, 14.5 km of roads, 91,000 square meters of slope protection, over 6000 square meters of office, living, storage and other facilities all to be completed within merely 8 months. To get the work done on time, Kayson mobilized as many as 1300 workers laboring 10-hour days and 350 pieces of light and heavy construction equipment operating virtually around the clock.
South Pars, Phases 4 & 5, Site Preparation

Project Outline
The South Pars Gas Field Site Preparation Project (Phases 4 & 5) was the second project in which Kayson experienced working with a foreign client in the Iranian port of Assaluyeh. The only difference was that this time the project had to be completed in half the time, although it involved virtually the same scope of work, including the same volume of earthwork as phases 2 & 3.

Apart from the time pressure, the most challenging issue facing the project management team was to bring the project’s implementation process into line with quality standards and construction procedures employed in developed countries. Thus, Kayson had to put in place an effective quality management system, set up an efficient and well-equipped HSE unit, work out detailed plans for daily, weekly & monthly progress reporting, make sure the necessary hardware and software were available to provide reliable communication links and information flow throughout the project management organization, and deploy schedule & cost control procedures to make certain that the project was completed on time and within budget.

In a matter of a few weeks, site mobilization was completed, an HSE unit composed of 22 employees assumed responsibility for health & safety and environmental management, the Finance and Administration Department took charge of 1800 workers and employees and a considerable cash flow per month, the IT & Computer Services Department set up a network to handle the storage, retrieval and distribution of information, the documentation section drew up a master plan for total and ongoing documentation of construction activities, the logistics and procurement units saw to it that the project’s requirements were met in a timely and efficient manner.

General Information
The South Pars Gas Field Development Project (Phases 4 & 5) is designed to produce 50 million cubic meters of natural gas per year, 8 thousand barrels of associated condensates per day, 1.05 million tonnes of liquefied natural gas per day, and 1 million tonnes of ethane per year to be used as feed stock by petrochemical plants.

Scope of Work
- Detailed engineering
- Grading of natural soil to form five horizontal plane levels ranging from +90m to +38m
- Construction of the main roads to provide access during construction of the refinery
- Preliminary drainage system to provide surface draining during construction of the refinery
- Temporary fencing of the site

Key Statistics
- Cutting: 4,086,477 m³
- Filling & grading: 1,953,446 m³
- Roads: 8,249 m
- Fencing: 4,616 m
- Drainage network: 14,947 m

Achievements at Peak
- Cutting: 56,023 m³/day
- Filling & grading: 44,726 m³/day
- Total number of equipment at site: 845 Set
- Total workforce: 1800 people
Project Outline

Almahdi Aluminum Complex

Almahdi is one of the largest and most modern aluminum smelting plants in the Middle East.

Construction Time and Kick-off Date of Each Contract:

- **Civil engineering work of phase 1:** 24 months, 1992
- **Manufacture and sale of steel structures of the potroom:** 7.5 months, 1993
- **Transportation and installation of potroom’s steel structures:** 9 months, 1993
- **Zinc factory:** 6 months, 1994 (Client: Iran Mineral Processing Co.)
- **Civil engineering works of P.F.T.P. units 1 & 2:** 10 months, 1994
- **Wastewater network and landscaping:** 8 months, 1995
- **Anode rodding and pallet storage:** 20 months, 1997

Main Features

- Design, manufacture and installation of machinery and equipment
- Civil engineering work relating to pot repair shop, warehouse, workshop, with a total area of 64,000 m²
- Installation of a substation, rectifier & auxiliary facilities
- Anode rodding plant: 17,000 m²
- Zinc smelting plant: 10,000 m²
- Surface water network: 5200 m
- Earthwork: 408,500 m³
- Concrete: 120,000 m³
- Reinforcement: 9,980 t
- Steel structure: 2,290 t
- Formwork: 134,000 m²

Client: Almahdi Aluminum Complex
Consulting Engineers: M & F Wimpey, Novin, Kahanroba, Pars Adak, Noha, Enerji Farda, Parsican Iran
Location: Bandar Abbas, Hormozgan Province, Iran
Status: Completed

Farashband Gas Refinery Processing Unit Development Plan

Project Outline

Farashband gas refinery processing unit development plan has been broken down into two separate EPC projects, comprising EPC1’s gas and EPC2’s gas condensates stabilization. Design, procurement and establishment of gas processing facilities are awarded to Kayson Company. The project is located in Farashband in Fars Province, 170 km southwest of Shiraz. In Farashband gas refinery, natural gas, which is extracted from Aghar and Dalan fields, is processed.

- **5.1 MMSCMD natural gas extracted from wells of Dey field (through a 14 inch-dia 40 km long pipeline)**
- **10.2 MMSCMD natural gas from Sefid-zakhur gas field (through a 20 inch-dia 90 km pipeline)**
- **5 MMSCMD additional gases from Aghar and Dalan fields form Farashband gas refinery.**

Along with the conveyance of these gases, the condensates, which are recovered in Sefid-zakhur field, are transported to EPC1 project via a 6 inch-dia 90 km transmission pipeline.

After the separation of gas and condensates in EPC1 project, the output flows into four units of Dehydration each with the capacity of 6.6 MMSCMD.

The final products of EPC1 project feed EPC2 project and will be delivered to the contractor on border area of EPC2 project:

- **The sweet gas which flows into two Dew-pointing units (each with the capacity of 6.6 MMSCMD) is finally delivered to border area of EPC2 project in order to be injected into an IGAT pipeline.**
- **The sour gas will also be delivered to a 42 inch-dia transmission pipeline.**
- **Gas condensates will be delivered unprocessed to EPC2 project.**

Scope of Work

- Endorsing basic engineering design packages
- Performing detailed engineering design (these activities are carried out by Enrichim Engineering Company and Kayson’s engineering management)
- Resolving site land conflicts including displacement of pipes, transmission tower and landscapes
- Levelling the territories of EPC1 and EPC2
- Fencing the whole site of EPC1 and EPC2
- Purchasing equipment and bulk items for EPC1
- Executing operations such as civil, mechanical, piping, electrical & instrumentation in EPC1
- Pre-commissioning and commissioning

Key statistics

- Cutting: 300,000 m³
- Filling: 110,000 m³
- Concrete: 18,000 m³
- Equipment weight (70 pieces): 1,600 t
- Steel structure: 700 t
- Piping: 130,000 inch-dia
- Cabling: 65,000 m
- Displacing 8 inch-dia pipelines: 1,700 m
Golgohar Pelletizing Plant

Project Outline
As a raw material, iron ore does not have considerable added value by itself. Thus processing and producing of pellet and sponge iron and finally its conversion into steel not only creates job opportunities but also supplies the producers with a rather higher added value. Continuous growth of steel production in the country highlights the ever-increasing need for establishing pelletizing units. Golgohar Mining and Industrial Co. accordingly decided to construct a pellet producing plant, following the construction of an iron ore concentration plant. This plant is capable of producing high quality pellets which are usable in Direct Reduction (DR) furnaces. It will also manufacture pellets with suitable and desired quality which can be fed directly into blast furnaces.

Procedures of Pellet Production
Golgohar pelletizing unit will be constructed in Sirjan by Gol-e-Gohar Iron Ore Co. with production capacity of 5 million tonnes per year. Through a 470 meters long conveyor belt, Golgohar’s concentrated outputs are transported to primary storage tanks, each with the capacity of 2000 tonnes. One of the reservoirs is dedicated to hematite ore. Producing pellet consists of three main stages:

- Preparing the material that includes drying, milling, separating small and large particles, storing in storage pits and mixing
- Producing raw pellet by means of rotary drums pelletizers
- Indurating, screening and transporting for maintenance or distribution

Scope of Work
- Geotechnical studies
- Site preparation
- Performing detailed engineering design based on Outotec’s basic designs (these activities are carried out by Sepahan Beyond Research Company)
- Procurement and transportation of equipment, steel structures, mechanical, piping, electrical & instrumentation (this part is related to items which are not Outotec Company’s responsibilities)
- Execution and installation of all equipment
- Pre-commissioning and commissioning

Key statistics
- Cutting: 31,240 m³
- Filling: 11,200 m³
- Site preparation: 50,000 m²
- Reinforced Concrete: 30,000 m³
- Reinforcement: 2,517 t
- Formwork: 20,790 m²
- Steel structure: 8,350 t
Establishment of Khorasan Steel Iron-Ore Concentrate Production Plant

Project Outline
The site of Khorasan Steel Iron-Ore Concentrate Production Plant Project is located along Sangan Public Mine Road, Sangan, 45 km from Khaf, Khorasan Razavi Province in northeastern Iran. The region around Khaf has a dry and hot arid climate with an average annual precipitation of 12 mm. Temperatures in the area vary between +42°C and -20°C. Maximum wind velocity is reported as 120 km/h. The input mineral rock to the plant is to be supplied from the A, B, and C anomalies in Sangan iron-ore mines. The total geological storage of iron ore in these mines amounts to 410 million tones and the average iron content of the iron-ore is 43.5%.

The new project aims to establish an iron-ore concentrate plant with a nominal annual production capacity of 2.5 million tones. This plant comprises the following units: crushing, transfer, accumulation, and harvesting units with a total capacity of 280,000 tones; crushed ore storage equipment (annual capacity = 5 million tones of iron ore concentrate); grinding and dewatering system; and truck and train loading system. Landscaping, semi-industrial buildings, out buildings, and other installations are also provided. The minimum iron content in the produced iron-ore concentrate would be 67.8%, and a grain size of 40 microns would be required for pelletizing operations. The plant water shall be supplied from 6 wells near Sangan Mining Complex and delivered to the Contractor in make-up water tanks (pressure = 1.5 bar). The power for the plant shall be supplied from the main electricity post via a 20 kV transmission line and delivered at a distance of 500 m from the Mining Complex side fence.
Sustainable Human Development & Social Responsibility

Creating spaces for living & working, building dams to produce hydropower and irrigate farmlands, transportation systems to link people means that Kayson operates in an environment where it is constantly surrounded by people, in urban and rural areas throughout Iran as well as overseas. We see our company as a member of communities in which we work, and we support them accordingly. We integrate the local community into our daily work as much as possible. Indeed, the entire Kayson family operates according to the conviction that we have to become a part of the community we serve in order to be successful. By community we mean the people who live and work close to our projects and who are affected, in one way or another, by what we build.

Kayson people view themselves as guests and partners in these communities and therefore consciously assume a long-term responsibility to people who live there. Accordingly, all of our project management teams pursue a clear policy of community involvement and take an active interest in community happenings. No matter where Kayson is executing a project, a key success factor is good relations with local residents and neighbors. For this reason, our operational units organize site visits and other informational events where local residents, end-users and other stakeholders can learn about the company’s projects. In some cases, a public relations expert is hired to liaise exclusively with the community.

Since its inception, Kayson’s fortunes as a company and its impacts on society have been inextricably linked. This simple idea of interdependence between business and society remains at the heart of our company. What has changed, however, is the size and scope of our Company and with it our social responsibilities.